Journal of Cellular Biochemistry 66:457-470 (1997)

Hybrid Structural Analogues of 1,25-(OH),D5; Regulate
Chondrocyte Proliferation and Proteoglycan Production
as Well as Protein Kinase C Through a Nongenomic
Pathway
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Abstract 1,25-(0OH),D; and 24,25-(OH),D3; mediate their effects on chondrocytes through the classic vitamin D
receptor (VDR) as well as through rapid membrane-mediated mechanisms which result in both nongenomic and
genomic effects. In intact cells, it is difficult to distinguish between genomic responses via the VDR and genomic and
nongenomic responses via membrane-mediated pathways. In this study, we used two hybrid analogues of 1,25-(OH),D5
which have been modified on the A-ring and C,D-ring side chain (1a-(hydroxymethyl)-33-hydroxy-20-epi-22-o0xa-26,27-
dihomo vitamin D3 (analogue MCW-YA = 3a) and 13-(hydroxymethyl)-3a-hydroxy-20-epi-22-oxa-26,27-dihomo vita-
min D3 (analogue MCW-YB = 3b) to examine the role of the VDR in response of rat costochondral resting zone (RC) and
growth zone (GC) chondrocytes to 1,25-(OH),D3; and 24,25-(OH),D;. These hybrid analogues are only 0.1% as
effective in binding to the VDR from calf thymus as 1,25-(OH),Ds;. Chondrocyte proliferation ([3H]-thymidine
incorporation), proteoglycan production ([3°S]-sulfate incorporation), and activity of protein kinase C (PKC) were
measured after treatment with 1,25-(OH),D5 , 24,25-(OH),D3, or the analogues. Both analogues inhibited proliferation
of both cell types, as did 1,25-(OH),D; and 24,25-(OH),D3. Analogue 3a had no effect on proteoglycan production by
GCs but increased that by RCs. Analogue 3b increased proteoglycan production in both GC and RC cultures. Both
analogues stimulated PKC in GC cells; however, neither 3a nor 3b had an effect on PKC activity in RC cells.
1,25-(0OH),D5 and 3a decreased PKC in matrix vesicles from GC cultures, whereas plasma membrane PKC activity was
increased, with 1,25-(OH),D; having a greater effect. 24,25-(OH),D; caused a significant decrease in PKC activity in
matrix vesicles from RC cultures; 24,25-(OH),D3, 3a, and 3b increased PKC activity in the plasma membrane fraction,
however. Thus, with little or no binding to calf thymus VDR, 3a and 3b can affect cell proliferation, proteoglycan
production, and PKC activity. The direct membrane effect is analogue-specific and cell maturation-dependent. By
studying analogues with greatly reduced affinity for the VDR, we have provided further evidence for the existence of a
membrane receptor(s) involved in mediating nongenomic effects of vitamin D metabolites. J. Cell. Biochem. 66:457-
470,1997. © 1997 Wiley-Liss, Inc.
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(VDR) in the cytosol. Once the ligand-receptor
complexes are translocated to the nucleus, they
interact with various transcription factors to
regulate genomic events, ultimately affecting
gene expression [Pike, 1992; Boyan et al., 1992].
1,25-(OH),D; has also been shown to regulate
MRNA stability [Kyeyune-Nyombi et al., 1991].
More recently, a second pathway has emerged,
involving rapid membrane events generally as-
sociated with peptide hormone stimulation of
transmembrane receptors [Norman and Col-
lins, 1996]. 1,25-(OH),D; and 24,25-(OH),D3;
have been shown to act directly on the plasma
membrane of target cells, causing rapid changes
in calcium flux [Yukihiro et al., 1994; Zhou et
al., 1992; Langston et al., 1990; Farach-Carson
et al., 1991], fatty acid metabolism [Schwartz et
al., 1990, 1992; Swain et al., 1992; Matsumoto
et al., 1981; Rasmussen et al., 1982], phospho-
lipid metabolism [Bourdeau et al., 1990; Tang
et al., 1987; Wali et al., 1990; Lieberherr et al.,
1989], membrane fluidity [Swain et al., 1993],
and protein kinase C (PKC) activity [Sylvia et
al., 1993, 1996]. These rapid actions may modu-
late nongenomic events, or they may culminate
in downstream genomic events.

When studying rapid responses to vitamin D
metabolites in intact cells, it is difficult to defini-
tively rule out a contribution of the VDR to the
mechanism. Rapid translocation of the VDR to
the plasma membrane of rat kidney cells after
exposure to 1,25-(OH),D; has been observed
[Kim et al., 1994, 1996], suggesting that it acts
as an acceptor for the vitamin D metabolite as
it traverses the inner leaflet of the membrane.
Subsequent studies showing rapid 1,25-
(OH),Ds—dependent intracellular calcium fluxes
supported the hypothesis that the VDR could
mediate rapid nongenomic actions [Kim et al.,
1994, 1996]. The phenomenon of transcalta-
chia, the rapid movement of Ca ions across the
intestinal plasma membrane, is also sensitive
to 1,25-(0OH),D3, but studies using analogues of
this vitamin D metabolite with low binding
affinity for the VDR indicate that the classic
cytosolic receptor is not involved. Rather, trans-
caltachia appears to result from the specific
interaction of 1,25-(OH),D; with a membrane
receptor [Nemere et al., 1994], resulting in rapid
regulation of voltage-gated Ca ion channels in
osteoblasts as well as intestinal epithelial cells.

Studies in our laboratory using plasma mem-
branes and matrix vesicles isolated from growth

plate chondrocyte cultures indicate that 1,25-
(OH),D; and 24,25-(0OH),D; interact in a spe-
cific manner with the membrane itself to ini-
tiate several signal transduction pathways
[Sylvia et al., 1993, 1996; Swain et al., 1993].
Moreover, these events are specific to the state
of endochondral maturation of the cartilage
from which the cells were originally derived
and to the type of membrane being examined.
This implies that receptors for specific vitamin
D metabolites exist in the membranes.

These experiments using isolated membranes
do not represent a fortuitous observation, with-
out relevance to the intact cell where rapid
recycling of the receptor is possible. Matrix
vesicles are located in the territorial matrix of
chondrocytes and osteoblasts [Boyan et al.,
1994a,b; Schwartz et al., 1988a] and can be
isolated from cultures in intact form, right-side
out [Schwartz et al., 1988b]. Whereas the vita-
min D metabolite-responsive PKC isoform in
plasma membranes is PKCa, in matrix vesicles
it is PKC({ [Sylvia et al., 1996]. This differential
distribution of PKC isoforms provides at least
one mechanism by which vitamin D metabo-
lites can elicit one response in plasma mem-
branes and another opposite effect in matrix
vesicles. Matrix vesicles contain neither RNA
nor DNA, so at least for this extracellular organ-
elle a genomic interpretation of the data is not
valid.

Recently, we reported studies using two ana-
logues of 1,25-(OH),D; which had been modi-
fied on the A ring, la-(hydroxymethyl)-33,
25-dihydroxyvitamin D3 (2a) and 1B-(hydroxy-
methyl)-3a,25-dihydroxyvitamin D; (2b) [Greis-
ing et al., 1996, in press; Posner and Dai, 1993;
Posner et al., 1992]. Despite their reduced bind-
ing capacity to the VDR to less than 0.1% that
of 1,25-(OH),D3, these analogues caused a re-
duction in chondrocyte proliferation [Greising
et al., 1996, in press], indicating that this re-
sponse to vitamin D is not VDR-dependent. In
addition, by use of these analogues in our chon-
drocyte model, we have also shown that at least
some of the effect of the analogues is via nonge-
nomic mechanisms; this membrane-associated
nongenomic response is cell maturation—depen-
dent; and the membrane effect may involve
specific receptors.

In order to obtain a more precise picture of
how conformational changes of 1,25-(OH),D;
modulate chondrocyte proliferation, differentia-
tion, matrix production, and transmembrane
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signaling mechanisms, we used two new hybrid
analogues of the vitamin D metabolite which
contain modifications on both the A-ring and
C,D-ring side chain, analogue MCW-YA (3a)
and its stereoisomer MCW-YB (3b) [Posner et
al., 1994, 1995] (Fig. 1). Both hybrid analogues
exhibit very high antiproliferative activity. Al-
though they both display less than 0.1% of the
binding affinity of 1,25-(OH),D; to the calf thy-
mus VDR, one report has shown that the ana-
logues still retain transcriptional activity
through the VDR [Peleg et al., 1996]. The hy-
brid analogues stimulate instantaneous cal-
cium channel opening, a nongenomic process in
rat osteosarcoma cells [Posner et al., 1994]. The
results of the present study demonstrate the
existence of a separate membrane receptor and
show that these vitamin D hybrid analogues
have potential as pharmaceuticals for treat-
ment of specific vitamin D-related diseases
which do not involve the VDR. Moreover, they
show that the state of cell maturation modu-
lates the membrane response.

MATERIALS AND METHODS
Synthesis of Vitamin D Analogues

Two hybrid analogues of 1,25-(OH),D; were
used for the described studies. Analogue
MCW-YA (3a) (La-(hydroxymethyl)-3p-hydroxy-
20-epi-22-0xa-26,27-dihomo vitamin D3;) and
analogue MCW-YB (3b) (1B-(hydroxymethyl)-
3a-hydroxy-20-epi-22-o0xa-26,27-dihomo vita-
min D,) (Fig. 1) were synthesized by convergent
coupling of 1-hydroxymethyl A-ring phosphine
oxide with modified C,D-ring ketones [Posner
et al., 1992, 1993a, 1994, 1995]. Small samples
of these hybrid analogues are available from
GHP for further biological evaluation.

Each vitamin D5 hybrid analogue was tested
at 1076 to 10~° M, which includes a range of
both physiological and pharmacological doses
of the active metabolites of vitamin D3 (1a,25-
(OH),D; and 24R,25-(OH),D3, gifts from Dr.
Milan Uskokovic, Hoffman-LaRoche, Nutley,
NJ). The metabolites and analogues were dis-
solved in ethanol. These stock solutions were
diluted at least 1:5,000 v/v with Dulbecco’s modi-
fied Eagle’s medium (DMEM) (Grand Island
Biological, Grand Island, NY) prior to adding to
the culture medium to minimize any toxic ef-
fects. Ethanol at the same concentration was
used as an internal control.

Chondrocyte Cultures

The culture system has been previously de-
scribed in detail [Boyan et al., 1988a,b]. Resting
zone (reserve zone) and growth zone (prehyper-
trophic and upper hypertrophic zones) chondro-
cytes were isolated from the costochondral car-
tilage of 125 g male Sprague-Dawley rats. The
cells were seeded into T-75 flasks at densities of
10,000 cells/cm? for resting zone chondrocytes
and 25,000 cells/cm? for growth zone chondro-
cytes and were cultured in DMEM containing
10% fetal bovine serum (FBS) and 50 pg/ml
vitamin C in an atmosphere of 5% CO, and
100% humidity at 37°C. The culture media
were replaced after 24 h and then at 72 h
intervals. At confluence, the cells were subcul-
tured at the same seeding densities. Third pas-
sage, confluent cultures were subpassaged into
24-well microtiter plates, grown to confluence,
and then used for the experiments. Prior stud-
ies have demonstrated a retention of differen-
tial phenotype with respect to vitamin D re-
sponse through this number of passages in
culture [Schmitz et al., 1996; Dean et al., 1996;
Boyan et al., 1988a,b, 1989, 1994a,b; Schwartz
et al., 1988a,b; Sylvia et al., 1993, 1996; Swain
etal., 1993].

Isolation of Plasma Membrane and Matrix
Vesicle Fractions

Chondrocyte plasma membranes and extra-
cellular matrix vesicles were isolated from con-
fluent cultures by digestion with 1% trypsin, as
described previously [Boyan et al., 1988b]. Cells
were separated by centrifugation from the tryp-
sin-digested matrix and resuspended in Hank’s
balanced salt solution. Chondrocytes were then
homogenized and plasma membranes prepared
according to the method of Fitzpatrick et al.
[1969]. The trypsin digest supernatant was cen-
trifuged again at 21,000g for 10 minutes to
pellet cell debris, including mitochondria and
endoplasmic reticulum. The resulting superna-
tant was centrifuged at 100,000g for 1 h to
pellet matrix vesicles. Protein content [Smith
et al., 1985] and alkaline phosphatase activity
[Bretaudiere and Spillman, 1984], using p-
nitrophenylphosphate as substrate at pH 10.2,
were determined for each membrane prepara-
tion.

Matrix vesicles isolated in this manner typi-
cally exhibit greater than twofold enrichment
of alkaline phosphatase specific activity when
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Fig. 1. Chemical structures of the different vitamin D analogues used in this study. The top shows the chemical
structures for 1«,25-(OH),D3 and 24R,25-(OH),D3. The chemical name for analogue MCW-YA (3a), shown in the
lower left, is la-(hydroxymethyl)-33-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3. The chemical name for
analogue MCW-YB (3b), shown in the lower right, is 13-(hydroxymethyl)-3a-hydroxy-20-epi-22-oxa-26,27-dihomo

vitamin Ds.

compared with the plasma membranes
[Schwartz et al., 1988a; Boyan et al., 1988a,b]
and have a transmission electron microscopic
appearance consistent with matrix vesicles in
vivo [Boyan et al., 1988a]. The purity of the
matrix vesicle preparations has been estab-

lished previously [Schwartz et al., 1988a; Boyan
et al., 1988a]. Further, since homogenization or
lysing of the cultures is not necessary for ma-
trix vesicle isolation, the matrix vesicles are
intact and right-side out after isolation. They
contain no DNA or RNA; therefore, any effect
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directly on the matrix vesicles will not involve
new gene transcription or translation.

[H]-Thymidine Incorporation

DNA synthesis was estimated by measuring
[EH]-thymidine incorporation into trichloroace-
tic acid (TCA)—insoluble cell precipitates, as
described previously [Schwartz et al., 1989].
Quiescence was induced by incubating resting
zone and growth zone chondrocytes for 48 h in
DMEM containing 1% FBS. The medium was
then replaced with DMEM containing 1% FBS
and various concentrations of vitamin D me-
tabolite or analogue. [*H]-thymidine (2 uCi/ml)
was added 2 h before harvest. At harvest, the
cell layers were washed twice with cold phos-
phate buffered saline (PBS) and twice with 5%
TCA and then treated with saturated TCA for
30 min. TCA-precipitable material was dis-
solved in 0.2 ml 1% sodium dodecyl sulfate
(SDS) and the radioactivity measured by liquid
scintillation spectroscopy.

[35S]-Sulfate Incorporation

Proteoglycan synthesis was assessed by mea-
suring [3S]-sulfate incorporation according to
the method of O’Keefe et al. [1988]. In prior
studies [Nasatzky et al., 1994], we found that
the amount of radiolabeled proteoglycan re-
leased by growth zone and resting zone chondro-
cytes into the medium was less than 15% of the
total radiolabeled proteoglycan (media and cell
layer) synthesized. Therefore, we examined only
the effects of hormone treatment on [35S]-
sulfate incorporation in the cell layer.

For assay, fourth passage growth zone and
resting zone chondrocytes were grown to conflu-
ence in 24-well culture plates (Corning, Corn-
ing, NY). Twenty-four hours before harvest,
fresh media containing vehicle alone or varying
concentrations of vitamin D metabolite or ana-
logue were added. Four hours prior to harvest,
50 pl DMEM containing 13 pCi/ml [3°S]-sulfate
and 0.814 mM carrier sulfate were added to
each culture. At harvest, the conditioned media
were removed and the cell layers (cells and
matrix) collected in two 0.25 ml portions of 0.25
M NaOH. The total volume was adjusted to
0.75 ml by the addition of 0.15 M NaCl and the
sample dialyzed in a 12,000-14,000 molecular
weight cut-off membrane against buffer contain-
ing 0.15 M NaCl, 20 mM Na,SO,, and 20 mM
Na,HPO,, pH 7.4, at 4°C. The dialysis solution
was changed until the radioactivity in the dialy-

sate reached background levels. The protein
content was then determined using a macro
BCA protein assay kit (Pierce Chemical Co.,
Rockford, IL). The amount of [33S]-sulfate incor-
porated was determined by liquid scintillation
spectrometry and calculated as disintegrations
per minute/mg protein in the cell layer.

Protein Kinase C Activity

Prior studies had shown that PKC activity in
growth zone chondrocytes is increased by treat-
ment with 1,25-(OH),D; but not 24,25-(OH),D;
and that maximal response is seen by 9 min. In
contrast, PKC activity in resting zone chondro-
cytes is affected by 24,25-(OH),D; but not 1,25-
(OH),Ds;, and maximal response is seen by 90
min [Sylvia et al., 1993]. Therefore, for the
current studies, vitamin D5 analogues and me-
tabolites were added to growth zone chondro-
cytes for 9 min and to resting zone chondrocytes
for 90 min. After incubation in experimental or
control media, the cell layers were washed with
PBS, loosened from the wells with a sterile cell
scraper, and lysed in solubilization buffer (50
mM Tris-HCI, pH 7.5, 150 mM NaCl, 5 mM
EDTA, 1 mM phenylmethylsulfonylfluoride, and
1% NP-40) for 30 min on ice.

Chondrocyte cell layer lysates, containing
equivalent amounts of protein, were mixed for
20 min with a lipid preparation containing phor-
bol-12-myristate-13-acetate, phosphatidylser-
ine, and Triton X-100 mixed micelles to provide
the necessary cofactors and conditions for opti-
mal enzyme activity [Bell et al., 1986]. To this
mixture, a high-affinity myelin basic protein
peptide and [32P]-ATP (25 uCi/ml) were added
to a final assay volume of 50 ul. Following a 10
min incubation in a 30°C water bath, samples
were spotted onto phosphocellulose discs, which
were then washed twice with 1% phosphoric
acid and once with distilled water to remove
unincorporated label prior to placement in a
scintillation counter. To verify whether the Ki-
nase activity affected by the analogues was
restricted to PKC activity and not due to other
protein kinases, we added a specific inhibitor
peptide corresponding to amino acid residues
19-36 of the PKC pseudosubstrate region to the
PKC reaction tubes at a final concentration of 3
UM [Yasuda et al., 1990].

To examine the involvement of genomic
mechanisms in PKC activation, we treated the
chondrocyte cultures with vitamin Dj; ana-
logues in the presence of the transcription in-
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hibitor actinomycin D or the translation inhibi-
tor cycloheximide. Growth zone chondrocytes
were incubated with analogue and 0.01 mM
actinomycin D or 0.1 mM cycloheximide for 9
min. Resting zone chondrocytes were incubated
with analogue and 0.01 mM actinomycin D or
0.1 mM cycloheximide for 90 min. Following
treatment with the inhibitors, the cells were
washed with PBS and assayed for PKC activity
as described above. To examine the role of
nongenomic mechanisms, isolated matrix
vesicles and plasma membranes were incu-
bated directly with the vitamin D; metabolites
or analogues and PKC activity measured as
described previously [Sylvia et al., 1996].

Statistical Analysis

All data are expressed as the mean * the
standard error of the mean (SEM) of six cul-
tures. Figures contain data from representa-
tive experiments. All experiments were per-
formed a minimum of three times. Significant
effects were determined by ANOVA and signifi-
cance between groups determined using the
Student’s t-test with Bonferroni’s correction for
multiple comparisons. P values less than 0.05
were considered significant.

RESULTS
Cell Proliferation

When either 1,25-(OH),D; or 24,25-(0OH),D;
was added to cultures of growth zone chondro-
cytes, a significant inhibition in [*H]-thymidine
incorporation was observed (Fig. 2A). The inhi-
bition produced by 1,25-(OH),D; was greater
than that produced by 24,25-(OH),D,. Addition
of either analogue 3a or 3b to the cells produced
a dose-dependent inhibition of [*H]-thymidine
incorporation (Fig. 2A). The inhibition was less
pronounced than that observed with 1,25-
(OH),D; at the same concentration but compa-
rable to that seen with 24,25-(OH),D;. [?H]-
thymidine incorporation by resting zone
chondrocytes was inhibited by 1,25-(OH),Ds,
whereas 24,25-(0OH),D; had no effect (Fig. 2B).
Addition of 3a or 3b to the cultures resulted in a
dose-dependent inhibition of [*H]-thymidine in-
corporation that was significant over the range
of 1077 t0 1075 M.

Proteoglycan Production

When 1,25-(0OH),D; was added to cultures of
growth zone chondrocytes, a significant in-
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Fig. 2. The effect of vitamin D analogues 3a and 3b on
[®H]-thymidine incorporation by growth zone and resting zone
chondrocytes. Confluent, fourth passage growth zone (A) and
resting zone (B) chondrocytes were treated for 24 h with vitamin
D vehicle, 24,25-(OH),D; (24,25), 1,25-(OH),D5 (1,25), or
vitamin D analogue and [3H]-thymidine incorporation deter-
mined. The figure shows the results of two separate experi-
ments, one for 3a and one for 3b, each with its own 1,25 and
24,25 and vehicle only controls. Each experiment was repeated
three times. Values represent the mean + SEM for six separate
cultures. *P < 0.05, significantly different from untreated con-
trol.

crease in [35S]-sulfate incorporation was ob-
served, whereas 24,25-(OH),D; was without ef-
fect. Similarly, analogue 3a had no effect on
[33S]-sulfate incorporation (Fig. 3A), while ana-
logue 3b stimulated [3°S]-sulfate incorporation
in a dose-dependent manner, with peak stimu-
lation occurring in cultures treated with 10" M
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Fig. 3. The effect of vitamin D analogues 3a and 3b on
[35S]-sulfate incorporation by growth zone (A) and resting zone
(B) chondrocytes. Confluent, fourth passage chondrocytes were
treated for 24 h with vitamin D vehicle, 24,25-(OH),D3 (24,25),
1,25-(OH),D3 (1,25), or vitamin D analogue and [3°S]-sulfate
incorporation by the cells determined. The figure shows the
results of two separate experiments, one for 3a and one for 3b,
each with its own 1,25 and 24,25 and vehicle only controls.
Each experiment was repeated three times. Values represent the
mean = SEM for six separate cultures. *P < 0.05, significantly
different from untreated control.

3b (Fig. 3A). When 1077 M 24,25-(0OH),D; was
added to cultures of resting zone chondrocytes,
a significant increase in [35S]-sulfate incorpora-
tion was observed (Fig. 3B). In contrast, no
effect was found with 1,25-(OH),D;. However,
both analogues stimulated [3°S]-sulfate incorpo-
ration in a dose-dependent manner.

Protein Kinase C Activity

Treatment of growth zone chondrocytes with
1,25-(OH),D3; for 9 min produced a significant
increase in PKC activity that was more than
four times the level found in untreated cultures
(Fig. 4A). In contrast, treatment with 24,25-
(OH),D; had no effect on PKC activity. When
these cells were treated for the same period of
time with analogue 3a, a dose-dependent in-
crease in PKC activity was observed that was
maximal at 10~7 M. Addition of either cyclohexi-
mide or actinomycin D to cultures treated with
107° to 1077 3a had no effect on the observed
level of PKC activity. However, in cultures
treated with 1078 M 3a, both inhibitors caused
a slight but significant decrease in PKC activ-
ity, although activity still was greater than in
the vehicle-only cultures. In growth zone chon-
drocyte cultures treated with analogue 3b (Fig.
5A), PKC activity was increased in a compa-
rable manner at all concentrations tested, and
this increase was unaffected by either cyclohexi-
mide or actinomycin D.

Addition of 24,25-(OH),D5; to resting zone
chondrocyte cultures for 90 min significantly
increased PKC activity, whereas 1,25-(OH),D;
had no effect. When either analogue 3a (Fig.
4B) or 3b (Fig. 5B) was added to the cultures for
the same period of time, no effect on PKC activ-
ity was observed, nor was there an effect of
cycloheximide or actinomycin D.

The vitamin D metabolites and analogues 3a
and 3b had direct effects on membrane PKC
that were dose- and time-dependent. Moreover,
the effects were cell maturation—specific. Treat-
ment of matrix vesicles produced by growth
zone cells with 1,25-(0OH),D; for 9 min signifi-
cantly inhibited PKC activity, while 24,25-
(OH),D; was without effect (Fig. 6A). Analogue
3a but not 3b inhibited PKC activity in the
matrix vesicles, but the degree of inhibition
was less than that seen with 1,25-(OH),D; and
occurred at a 100X higher concentration. PKC
activity in plasma membranes from growth zone
chondrocytes was also affected by hormone and
analogue treatment (Fig. 6B). 1,25-(OH),D;
stimulated PKC, whereas 24,25-(OH),D; and
3b were without effect. Analogue 3a, however,
caused a dose-dependent increase in plasma
membrane PKC, although the effect was signifi-
cantly less than that produced by 1,25-(OH),Ds.
Similar results were obtained when matrix vesicles
and plasma membranes from growth zone cul-
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Fig. 4. Effect of vitamin D analogue 3a on PKC specific activity
of growth zone and resting zone chondrocytes. Confluent,
fourth passage growth zone (A) and resting zone (B) chondro-
cytes were treated for 9 and 90 min, respectively, with vitamin
D vehicle (control), 24,25-(OH),D3 (24,25), 1,25-(OH),D3 (1,25),
or 3a and PKC specific activity in the cell layer determined.
Some cultures were treated with 0.1 mM cycloheximide (CHX),
an inhibitor of translation, or 0.01 mM actinomycin D (Act. D),
an inhibitor of transcription. The figure shows results from one
of three identical experiments yielding similar results. Values
represent the mean = SEM for six separate cultures. *P < 0.05,
significantly different from vehicle-only control. P < 0.05,
significantly different from analogue treatment alone.

tures were incubated with the vitamin D metabo-
lites or analogues for 90 min (data not shown).

PKC activity in matrix vesicles and plasma
membranes from resting zone chondrocyte cul-
tures was sensitive to the direct action of 24,25-
(OH),D; and analogues 3a and 3b in a cell
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Fig.5. Effect of vitamin D analogue 3b on PKC specific activity
of growth zone and resting zone chondrocytes. Confluent,
fourth passage growth zone (A) and resting zone (B) chondro-
cytes were treated for 9 and 90 min, respectively, with vitamin
D vehicle (control), 24,25-(OH),D3 (24,25), 1,25-(OH),D3 (1,25),
or analogue 3b and PKC specific activity in the cell layer
determined. Some cultures were treated with 0.1 mM cyclohexi-
mide (CHX), an inhibitor of translation, or 0.01 mM actinomy-
cin D (Act. D), an inhibitor of transcription. The figure shows the
results from one of three identical experiments yielding similar
results. Values represent the mean = SEM for six separate
cultures. *P < 0.05, significantly different from vehicle-only
control.

maturation—specific manner (Fig. 7). PKC activ-
ity in matrix vesicles was inhibited by treat-
ment with 24,25-(OH),D; for 90 min, while
1,25-(OH),D; and analogues 3a and 3b were
without effect (Fig. 7A). Plasma membrane en-
zyme activity was stimulated by treatment with
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Fig. 6. The direct effect of vitamin D analogues 3a and 3b on
PKC specific activity in matrix vesicles (MV) and plasma mem-
branes (PM) isolated from growth zone chondrocyte (GC) cul-
tures. MV (A) and PM (B) were isolated from fourth passage
cultures and treated with vitamin D vehicle, 24,25-(OH),D3
(24,25), 1,25-(OH),D3 (1,25), or vitamin D analogue for 9 min
and PKC specific activity determined. The figure shows the
results from one of three identical experiments yielding similar
results. Values represent the mean = SEM for membranes from
six separate cultures. *P < 0.05, significantly different from
untreated control.

24,25-(0OH),D; for 90 min (Fig. 7B). Incubation
with 3a or 3b increased PKC activity in a dose-
dependent manner, but the effect was less po-
tent than that observed with 24,25-(OH),Ds.
After 9 min of exposure to the vitamin D metabo-
lites or analogues, membrane PKC activity was
affected in a similar manner to that seen at 90
min (data not shown).
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Fig. 7. The direct effect of vitamin D analogues 3a and 3b on
PKC specific activity of matrix vesicles (MV) and plasma mem-
branes (PM) isolated from resting zone chondrocyte (RC) cul-
tures. MV (A) and PM (B) were isolated from fourth passage
cultures and treated with vitamin D vehicle, 24,25-(OH),D3
(24,25), 1,25-(0OH),D3 (1,25), or vitamin D analogue for 90 min
and PKC specific activity determined. The figure shows the
results from one of three identical experiments yielding similar
results. Values represent the mean = SEM for membranes from
six separate cultures. *P < 0.05, significantly different from
untreated control.

DISCUSSION

The mechanisms by which the metabolites of
vitamin D exert their effects on cells are com-
plex. Part of the effect is mediated through the
traditional vitamin Dj receptor [Pike, 1992;
Boyan et al., 1992]. The recent indications that
membrane components are capable of binding
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1,25-(OH),D; and 24,25-(OH),D; [Nemere et al.,
1994; Seo and Norman, 1996; Norman et al.,
1994; Lieberherr et al., 1989] suggest that mem-
brane receptors may play a role as well. Whether
or not specific membrane receptors are involved
in the mechanism of vitamin D3 action, rapid
membrane responses can elicit genomic effects
via a number of signal transduction pathways
including PKC. Alternatively, these rapid re-
sponses may be nongenomic, resulting in no
new gene expression, again via a variety of
signal transduction pathways.

In the present study, we examined the mech-
anism of vitamin D3 action using specific hybrid
analogues of 1,25-(OH),D; which had very low
binding capacities for the VDR [Posner et al.,
1992, 1994, 1995; Posner and Dai, 1993] yet
still had biological activity [Posner et al., 1992,
1993b]. Our results show that, despite the low
VDR binding capacity, these hybrid analogues,
like the active metabolites of vitamin D3, regu-
lated chondrocyte proliferation. This suggests
that at least part of the antiproliferative effect
is not through the traditional VDR pathway,
although both genomic and nongenomic mecha-
nisms may be involved.

The effects of the hybrid analogues on the
chondrocytes varied, depending on the param-
eter being examined, implying that different
aspects of the cellular response to vitamin D
are mediated through independent mecha-
nisms. While chondrocyte proliferation was in-
hibited by both analogues in both growth zone
and resting zone cells, [3°S]-sulfate incorpora-
tion was regulated by both 3a and 3b in resting
zone cells but only by 3b in growth zone cells.
PKC activity was increased in growth zone cells
by both analogues, but the dose dependence of
the effect was analogue-dependent; neither ana-
logue affected PKC activity in resting zone chon-
drocyte cultures.

There is an increasing body of evidence to
support the hypothesis that gene expression in
response to vitamin D metabolites can be regu-
lated by signal transduction pathways other
than the traditional VDR. Changes in intracel-
lular Ca ion compartmentalization [Kim et al.,
1994, 1996] as well as transcaltachia [Schwartz
et al., 1991; Langston et al., 1990; Norman et
al., 1992, 1994; Farach-Carson et al., 1991] may
play a role. Our previous results support the
contention that 1,25-(OH),D; and 24,25-
(OH),D; mediate their effects, at least in part,
through changes in PKC activity [Sylvia et al.,

1993, 1996]. The observation that analogues 3a
and 3b stimulate PKC activity in growth zone
cells suggests that these compounds also oper-
ate via PKC in these cells. However, other
mechanisms may be involved in the resting
zone cells since increased PKC was not detected
in response to the analogues.

It is likely that increased PKC activity is a
rapid response to both 3a and 3b in both cell
types. The effect in growth zone cells occurs by
9 min and is insensitive to either transcription
or translation inhibitors, indicating that nonge-
nomic mechanisms are involved. The mecha-
nisms by which this occurs are not clear, how-
ever. At least for analogue 3b, direct effects on
plasma membrane or matrix vesicle PKC do not
appear to be involved. An alternative explana-
tion is that 3b promotes the rapid translocation
of existing cytosolic PKC to the membrane in
the intact cell [Abou-Samra et al., 1989]. In
contrast, analogue 3a does exert small but sig-
nificant direct effects on plasma membrane
PKC. This difference in the mode of action of 3a
and 3b points to the stereospecificity of the
mechanism.

In resting zone cells at 90 min, the time of
maximum response to 24,25-(0OH),D3, no effect
of either 3a or 3b on cellular PKC is evident.
Previously, we showed that the 24,25-(OH),Ds—
dependent increase in PKC involved genomic
mechanisms [Sylvia et al., 1993], and we can-
not rule this out for 3a or 3b if an increase in
PKC expression did occur at some time earlier
than 90 min. Recent studies indicate that PKC
can be modulated directly through changes in
phospholipid metabolism [Helm et al., 1996],
which could account for the fact that isolated
plasma membranes show dose-dependent in-
creases in PKC activity when incubated di-
rectly with the analogues. Matrix vesicles iso-
lated from resting zone cultures do not show a
direct effect in response to either 3a or 3b,
indicating that the elements needed for this
response are not present. Several studies have
shown that the composition of matrix vesicles
produced by these cells is different from that of
the plasma membrane as well as from matrix
vesicles and plasma membranes isolated from
growth zone chondrocyte cultures [Boyan et al.,
1988a,b, 1992).

These experiments also show that, with re-
spect to [3°S]-sulfate incorporation, 3b acted
like, 1,25-(OH),D5 in growth zone cells and like
24,25-(0OH),D; in resting zone cells [Schwartz



Vitamin D3 Analogues Regulate Chondrocytes 467

et al., 1995]. This suggests that the active site
on analogue 3b is common to the active sites on
1,25-(OH),D; and 24,25-(0OH),D; as it pertains
to this parameter and that cell specificity is
conferred by the C-24 carbon. Previous studies
demonstrate that neither singly modified ana-
logue 2a nor 2b, which have the same A-ring
modification as hybrid analogues 3a and 3b,
affect [3°S]-sulfate incorporation in either cell
type [Greising et al., 1996, in press], even though
proteoglycan synthesis was sensitive to the vita-
min D; metabolites, as reported previously
[Schwartz et al., 1995]. This indicates that the
A-ring may not play an active role in the inter-
action of the vitamin D metabolites with ele-
ments regulating glycosaminoglycan sulfation.

It may well be that the habit assumed by the
vitamin D metabolites within the cellular and
matrix vesicle membranes is due to charge den-
sity differences. However, it is also possible that
the modification on the A-ring is such that it
assumes a conformation like 24,25-(OH),D;
when it interacts with membranes isolated from
resting zone cell cultures. This is supported by
the observation that analogue 3a behaved like
24,25-(0OH),D; in both resting zone and growth
zone cells cultures, causing a dose-dependent
increase in [¥S]-sulfate incorporation in the
former and having no effect in the latter.

The chemical structure of the analogue was
important to its ability to regulate the chondro-
cytes. The cells were able to discriminate be-
tween stereoisomers. In the example presented
above, 3a exerted an effect on [35S]-sulfate incor-
poration in resting zone chondrocytes only,
whereas 3b elicited a dose-dependent increase
in both types of chondrocytes. While both 3a
and 3b stimulated PKC in growth zone cells,
dose dependence was demonstrated only for 3a.
Moreover, neither metabolite elicited a detect-
able effect on PKC activity in the culture ly-
sates. These data indicate that the stereochemi-
cal orientation of the A-ring hydroxymethyl
group is important in regulating biological re-
sponses. In previous studies we showed that
singly modified analogue 2a caused a marked
increase in PKC activity, but its stereoisomer,
analogue 2b, had only a minor effect on activity
of this enzyme in growth zone cells and essen-
tially no effect on PKC activity in resting zone
cells [Greising et al., 1996, in press]. That this
response is sensitive to minor variations in
structure is evident by the difference in the
magnitude of response elicited by hybrid ana-

logues 3a and 3b in growth zone cells and the
lack of response of either growth zone or resting
zone chondrocytes to analogue 2b [Greising et
al., 1996, in press]. Studies using isolated mem-
branes demonstrate clearly the importance of
the stereochemical orientation of the A-ring in
the nongenomic response.

The A-ring modification, which is present in
the type 2 singly modified analogues [Posner
and Dai, 1993; Posner et al., 1992] and type 3
[Posner et al., 1994, 1995] hybrid analogues, is
involved in the nongenomic activation of PKC.
The type 3 hybrid analogues exerted their ef-
fects only on growth zone chondrocytes, whereas
singly modified analogue 2a stimulated PKC
activity in both types of chondrocytes. It is
likely that the C,D-ring modification found in
the type 3 hybrid analogues alters the conforma-
tion sufficiently to prevent the specific interac-
tion needed to elicit the nongenomic response
in the resting zone cells.

These results indicate that the membrane
effects of the analogues are very specific and
most probably mediated through receptors, al-
though not the VDR. Only small changes in the
structure of the analogues were sufficient to
cause a major change in the biological response.
The specificity conferred by the correct stereo-
chemical configuration has been shown by oth-
ers using 1a,25-(OH),D; vs. 1B,25-(OH),D; or
24R,25-(0OH),D; vs. 24S,25-(OH),D; [Norman
etal., 1992; Okamura et al., 1974; Baran et al.,
1990]. This specificity of the nongenomic re-
sponse is not limited to secosteroids but has
also been demonstrated with steroid hormones
as well. 17B- but not 17«-estradiol elicits rapid
changes in membrane enzyme activity and fatty
acid turnover in costochondral chondrocyte cul-
tures and alters the fluidity of isolated mem-
branes [Schwartz et al., 1996].

The biological role of 24,25-(OH),D; has been
controversial for the last decade. Some studies
suggest that it is only a weak metabolite [Nor-
man et al., 1982], although there is mounting
evidence that it plays an important role in
cartilage differentiation [Yamaura et al., 1993;
Nakamura et al., 1992; Lidor et al., 1987a;
Ornoy et al., 1978; Schwartz et al., 1995] as
well as in fracture healing [Lidor et al., 1987b,c].
This study confirms that a structural analogue
of 1,25-(OH),D3 had similar effects on chondro-
cytes as 24,25-(0OH),D;, suggesting that metabo-
lites other than 1,25-(OH),D; play a role in
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endochondral bone formation in general and on
cartilage differentiation, specifically.

In summary, this study shows that selected
biological responses can, in fact, be elicited by
specific structural modification of vitamin D.
Moreover, the results indicate that part of the
effect of vitamin D metabolites on chondrocytes
is not mediated through the VDR, and some of
these effects are nongenomic. Finally, our find-
ings suggest that specific membrane receptors
for vitamin D metabolites are present in growth
plate chondrocytes and they are regulated in a
cell maturation—dependent manner.
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